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Relating protein pharmacology by
ligand chemistry
Michael J Keiser1,2, Bryan L Roth3,4, Blaine N Armbruster4, Paul Ernsberger3, John J Irwin1 & Brian K Shoichet1

The identification of protein function based on biological 
information is an area of intense research. Here we consider 
a complementary technique that quantitatively groups and 
relates proteins based on the chemical similarity of their 
ligands. We began with 65,000 ligands annotated into sets 
for hundreds of drug targets. The similarity score between 
each set was calculated using ligand topology. A statistical 
model was developed to rank the significance of the resulting 
similarity scores, which are expressed as a minimum spanning 
tree to map the sets together. Although these maps are 
connected solely by chemical similarity, biologically sensible 
clusters nevertheless emerged. Links among unexpected 
targets also emerged, among them that methadone, emetine 
and loperamide (Imodium) may antagonize muscarinic 
M3, αα2 adrenergic and neurokinin NK2 receptors, 
respectively. These predictions were subsequently confirmed 
experimentally. Relating receptors by ligand chemistry 
organizes biology to reveal unexpected relationships that may 
be assayed using the ligands themselves.

It is a curious pharmacological fact that related drugs and biologi-
cal messengers can bind to receptors that appear unrelated by many 
bioinformatics metrics. For instance, serotonin and serotonergic 
drugs bind to G-protein coupled receptors (GPCRs) such as the 5-
hydroxytryptamine subtypes 1, 2 and 4–7 (5-HT1,2,4–7), but also 
to an ion channel, the 5-HT3A receptor1,2. Ionotropic and metabo-
tropic 5-HT receptors are unrelated by sequence and structure, yet 
both are involved in the pharmacological effects of serotonergic 
drugs. Similarly, the well-known opioid methadone binds not only 
to the µ-opioid receptor, a GPCR, but also to the N-methyl-D-aspar-
tic acid (NMDA) receptor3, an ion channel, and both are thought to 
be involved in the drug’s biological activity4. Benzodiazepines affect

mitochondrial proteins in addition to their primary therapeutic actions 
on ion channels5. The enzymes thymidylate synthase (TS), dihydrofo-
late reductase (DHFR) and glycinamide ribonucleotide formyltrans-
ferase (GART) all recognize folic acid derivatives and are inhibited by 
antifolate drugs. Despite this, the three enzymes have no substantial 
sequence identity and are structurally unrelated. This disregard for 
typical biological categories on the part of small molecules can lead to 
infamous side effects—although cisapride stimulates 5-HT4 receptors 
and astemizole inhibits histamine H1 receptors, both also inhibit the 
hERG ion channel, leading to unexpected cardiac pathologies6. The 
ability of chemically similar drugs to bind proteins without obvious 
sequence or structural similarity can confound a purely biological logic 
to understanding and categorizing their action.

A chemo-centric approach to this problem is to compare not the 
biological targets themselves but rather the chemistry of their ligands7. 
The motivating hypothesis is that two similar molecules are likely to 
have similar properties8, and will bind to the same group of proteins. 
Whereas this hypothesis may be violated in specific cases—a small 
change in chemical structure can dramatically change binding affin-
ity—chemical similarity is often a good guide to the biological action 
of an organic molecule9. Indeed, chemical similarity is a central prin-
ciple in ligand design10, and an extensive chemoinformatic literature 
explores many methods to compare pairs of ligands for such similar-
ity11. Recently, Hopkins and colleagues found that using the simplest 
form of chemical similarity—full chemical identity among ligands 
shared by two or more receptors—linkage maps can be calculated to 
relate targets12. Vieth and colleagues, using a different approach, have 
used dendrograms of inhibitors to organize the selectivity relation-
ships among kinases13. Izrailev and Farnum have also linked ligand 
sets by focusing on the most similar molecules between them14. These 
and recent efforts in predicting pharmacologic profiles15–19 have led 
to the development of probabilistic models to predict polypharmacol-
ogy and assess the ‘druggability’ of protein targets.

Here we investigate techniques to relate receptors to each other 
quantitatively based on the chemical similarity among their ligands. In 
this method, which we call the Similarity Ensemble Approach (SEA), 
two sets of ligands are often judged similar even though no single 
identical ligand is shared between them. We use a collection of about 
65,000 ligands annotated for drug targets, where most annotations 
contain hundreds of ligands. To compare sets without size or chemi-
cal composition bias, we introduce a technique that corrects for the 
chemical similarity we might expect between ligand sets at random, 
using a model resembling that of BLAST20–22. This technique enables 
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us to link hundreds of ligand sets—and correspondingly the protein 
targets—together in minimal spanning trees. Whereas these trees are 
calculated by chemical similarity, recognizable clusters of biologically 
related proteins emerge from them. We consider the origins and possi-
ble significance of both the recognized and unexpected relationships, 
and their use for uncovering side effects and polypharmacology of 
individual chemical agents. We test several such unexpected relation-
ships in biochemical and cell-based assays.

RESULTS
Similarity scores between ligand sets. We used a 246-receptor subset 
of the MDL Drug Data Report (MDDR), which annotates ligands 
according to the receptor whose function 
they modulate. Each ligand in each set was 
compared to each ligand in every other set. 
Overall, 246 versus 246 set comparisons 
were made, involving 65,241 unique ligands 
and 5.07 × 109 total ligand pairs. Tanimoto 
coefficients (Tc) of chemical similarity were 
calculated for each pair of ligands. For most 
ligand pairs the Tc was low, in the 0.2 to 0.3 
range, which is typically considered insub-
stantial similarity. This was true even when 
comparing a set to itself. For instance, when 
comparing the 216 ligands of the antifolate 
enzyme DHFR to themselves, 80.4% of the 
pairs had a Tc in the 0.1 to 0.4 range, with 
only 4.7% having more substantial scores in 
the 0.6–1.0 range and only 0.5% having a Tc 
of 1.0 (only 216 ligands are, after all, identi-
cal) (Fig. 1). This pattern was also observed 
in comparing the 253 ligands of the antifolate 
enzyme TS to the DHFR ligands. Here only 
0.06% of ligand pairs were identical (Tc of 

1.0), 1.6% of pairs had Tc values of 0.6 to 1.0 and 85.5% had Tc values 
between 0.1 and 0.4. When the set of 1,226 ligands for the protease 
thrombin was compared to that of DHFR, a peak containing 97.1% of 
all pairs was observed between Tc values of 0.1 to 0.4, but no identical 
pairs were observed nor were there any ligand pairs that had Tc values 
>0.5. The raw similarity score, which is the sum of ligand pair Tcs 
over all pairs with Tc ≥ 0.57, between the DHFR and thrombin ligand 
sets was therefore 0; the raw score between DHFR and TS ligand sets 
was 772.25, whereas that of the DHFR set against itself was 1,931.60. 
This is consistent with the lack of similarity between the ligand sets 
of thrombin and DHFR and with the considerable similarity between 
the sets of TS and DHFR, both of which contain related antifolate 
drugs and their analogs.

Patterns of similarity. Most pairs of ligand sets resembled the TS versus 
thrombin comparison and had no raw score similarity. Of the 60,516 set 
pairs, 70.8% had raw scores of 0. As the size of the sets grew, however, 
the likelihood that two would have pairs of ligands with Tc ≥ 0.57 also 
grew. Indeed, there was a linear relation between the raw score and the 
number of ligands in the sets being compared (see Supplementary 
Fig. 1 online). To compare the significance of the set similarity raw 
scores across sets of different sizes, we developed a statistical model 
of the similarity we would expect at random for sets drawn from the 
same large but finite database of ligands. This allowed us to calculate 
Z-scores and expectation values for any raw score for ligand sets of any 
size, such that the background fit an extreme value distribution (see 
Supplementary Fig. 1c online). As far as we know, a statistical model for 
random set similarity has not been previously used in chemoinformat-
ics (although Z-scores have been used for comparisons of individual 
compounds23,24). As in sequence comparisons, the expectation values 
that such a model allows are critical for unbiased and quantitative 
comparison of multiple ligand sets. As would be expected, 95.2% of 
set-to-set comparisons had expectation values >1. The similarity of the 
overwhelming majority of ligand sets was thus no greater than what 
one would expect at random. Returning to the comparison of DHFR, 
TS and thrombin, the DHFR set versus itself had a Z-score of 333.4 
and an expectation value of 7.07 × 10−182 (Table 1), suggesting very 
high similarity, whereas DHFR versus TS had a Z-score of 117.6 and 
an E-value of 1.11 × 10−61. As DHFR versus thrombin did not yield a 

Figure 1  Comparing similar and dissimilar ligand sets to that of DHFR. 
Log-scale distributions of ligand-ligand similarity for different ligand sets: 
DHFR ligands compared to themselves (red), DHFR ligands compared to 
the related thymidylate synthase (TS) ligands (green), and DHFR ligands 
compared to the unrelated thrombin ligands (blue). The Tc ranges from 0 
(complete dissimilarity) to 1 (identity). The ligand sets were derived from 
MDDR annotations.
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Table 1  MDDR activity classes resembling MDDR “Dihydrofolate Reductase Inhibitor”

Rank Activity class E-value Example molecule
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raw score >0, no Z-score was calculated and 
the comparison was unranked.

With a model of random similarity, we 
could compare statistically weighted versions 
of the raw scores for all pairs of sets. Even 
fewer sets had statistically significant similar-
ity after correction for random expectation. 
On average, any given receptor was similar to 
only 5.8 other receptors with an expectation 
value <10−10. Further down the rank-ordered 
list, the expectation values among targets 
fell off steeply, and within a few targets the 
similarity typically fell to insignificance. For 
example, the set of α-amino-5-hydroxy-3-
methyl-4-isoxazole propionic acid (AMPA) 
receptor antagonists was highly similar to 
two other ligand sets: kainic acid antagonists 
and NMDA antagonists, with E-values of 
5.28 × 10−80 and 3.08 × 10−63, respectively. 
The third most significant ligand set was the 
anaphylatoxin receptor antagonists, with 
an E-value of 3.81 × 10−4, and by the sixth 
ranked target the similarity was insignifi-
cant (E-value 1.00 × 10−1, Table 2; for more 
detail see Supplementary Table 1 online). 
Correspondingly, few targets were unrelated 
to any others; only 18 such orphans were 
found (see Supplementary Table 2 online). A 
few targets were relatively promiscuous, with 
14 being related to more than 10 other targets 
with expectation values <10−50.

The similarity of ligand sets to small 
archipelagos of other ligand sets allowed us 
to calculate maps connecting almost all sets 
together through sequential linkage (Fig. 2a). 
In this map and in the sparser minimal span-
ning tree, where we connect only the most 
similar neighbors (Fig. 2b), clusters of bio-
logically related targets may be observed as an 
emergent property, as no explicit biological 
information, only ligand information, is used 
to calculate the cross-target similarity. Thus, 
the glutamate receptors group together (Fig. 
2b), and the steroids localize around andro-
gen- and estrogen-receptor ligands (Fig. 2b, 
iv). Likewise, the folate, phosphodiesterase 
and β-lactam sets each colocalize and intra-
connect (Fig. 2b). Conversely, whereas the 
serotonin metabotropic receptors cluster 
together, and ionotropic ligand receptors do 
so as well, the two receptor subtypes are dis-
tinct (Fig. 2b, ii and iii). Similar clustering 
may be observed in other regions of the map.

For this method to have wide utility, it is important that sets of 
ligands from different sources – for instance, not just from within 
the MDDR – can be compared. To test this, we built 23 ligand sets 
from 1,421 compounds in PubChem Compound that were not in 
the MDDR, organized by their MeSH Pharmacological Actions. We 
then queried these sets against our collection of 246 MDDR activ-
ity classes and ranked them by ligand-set pharmacological similarity 
(Table 3). Of the 23 PubChem query sets, 17 found a matching MDDR 

activity class as the top-ranked hit. When repeated using the mean 
pair-wise similarity (MPS)14,25,26 of the sets instead of the statisti-
cally-corrected expectation values, only nine of the queries found 
a matching top-ranked hit. On average, a matching MDDR hit was 
found within the top 1.4 ranks of the PubChem queries’ hit lists using 
pharmacological similarity (SEA), compared to within the top 8.2 
ranks when ranked by MPS (see Supplementary Table 3 online). 
This attests to the importance of a statistical control for similarities 
expected at random.

Table 2  MDDR activity classes resembling five example MDDR activity classes

Query Rank Size Similar activity classes E-value Tc 1.0 Max Tc

A
M

PA
 r

ec
ep

to
r 

A
nt

ag
on

is
t

1 569 AMPA receptor antagonist 2.45 × 10−219 577 1.00

2 75 Kainic acid receptor antagonist 5.28 × 10−80 74 1.00

3 1485 NMDA receptor antagonist 3.08 × 10−63 181 1.00

4 22 Anaphylatoxin receptor antagonist 3.81 × 10−4 0 0.70

5 130 µ agonist 1.69 × 10−3 0 0.83

6 99 Ribonucleotide reductase inhibitor 1.00 × 10−1 0 0.73

C
ar

ba
ce

ph
em

1 98 Carbacephem 0a 106 1.00

2 1614 Cephalosporin 1.11 × 10−222 14 1.00

3 35 Isocephem 2.30 × 10−17 0 0.64

4 257 Penem 2.43 × 10−4 0 0.68

5 13 Oxacephem 8.38 × 10−3 0 0.69

6 39 Lactam (β) antibiotic 2.62 × 10−2 0 0.62

7 223 Lactamase (β) inhibitor 6.58 × 10−1 1 1.00

8 116 Monocyclic β-lactam 3.18 × 102 0 0.61

A
nd

ro
ge

n

1 50 Androgen 0a 138 1.00

2 577 Aromatase inhibitor 6.87 × 10−307 0 0.88

3 43 Antiglucocorticoid 2.30 × 10−102 0 0.89

4 6 Cytochrome P450 oxidase inhibitor 4.01 × 10−93 0 0.92

5 179 Estrogen 9.97 × 10−89 0 0.91

6 86 Antiestrogen 2.18 × 10−76 0 0.84

7 936 Steroid (5α) reductase inhibitor 1.58 × 10−72 0 0.80

8 103 Antiandrogen 1.14 × 10−70 0 0.99

9 86 17α-hydroxylase/C17-20 lyase inhibitor 7.88 × 10−66 0 0.76

10 164 Progesterone antagonist 3.26 × 10−44 0 0.89

11 62 Prostaglandin 1.93 × 10−38 0 0.75

5
 H

T1
F 

A
go

ni
st

1 111 5 HT1F agonist 6.72 × 10−187 113 1.00

2 621 5 HT1D agonist 8.08 × 10−38 0 0.95

3 51 5 HT1B agonist 2.96 × 10−10 0 0.95

4 65 5 HT1 agonist 3.03 × 10−8 0 0.81

5 670 Dopamine (D4) antagonist 1.90 × 10−6 0 0.79

6 565 5 HT1A antagonist 8.64 × 10−1 0 0.71

7 33 5 HT2 antagonist 8.78 × 10−1 0 0.65

8 705 5 HT2A antagonist 1.47 0 0.73

A
dr

en
er

gi
c 

(β
1

) 
A

go
ni

st

1 8 Adrenergic (β1) agonist 3.85 × 10−241 10 1.00

2 305 Adrenergic (β) agonist 9.50 × 10−34 0 0.81

3 67 Adrenergic (β1) blocker 4.99 × 10−32 0 0.64

4 563 Adrenoceptor (β3) agonist 2.98 × 10−24 0 0.72

5 212 Adrenergic (β) blocker 3.96 × 10−13 0 0.78

6 13 Adrenergic, ophthalmic 2.77 × 10−7 0 0.70

7 518 Adrenergic (α1) blocker 6.84 × 10−5 0 0.73

8 124 Melatonin agonist 1.04 × 10−1 0 0.63

9 76 Dopamine (D1) agonist 2.18 × 10−1 0 0.71

10 102 Adrenergic (α2) agonist 4.72 × 10−1 0 0.66
aE-value < 10−320.
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Comparison to sequence similarity. The statistical model for ligand 
set similarity allowed us to directly compare the resulting E-values 
with those derived from sequence comparison. We mapped 193 
MDDR activity classes to their protein target sequences and deter-
mined the sequence similarity among them using PSI-BLAST27. We 
then computed a heat map highlighting the differences between phar-
macological similarity and sequence similarity among these targets 
(Fig. 3a). In this heat map, many ligand sets with enzyme targets were 
pharmacologically similar but sequence dissimilar. Examples include 
folate-recognition enzymes and adenosine-binding enzymes (Fig. 3b). 
By comparison, many neurological receptors had stronger sequence, 
than pharmacological, similarity (Fig. 3c).

Predicting and testing drug promiscuity. We were interested in 
exploring the behavior of single agents that were known to have either 
promiscuous or off-target actions. An example of the latter was meth-
adone, known to have dual specificity for NMDA and µ-opioid recep-
tors. Methadone is an unusual chemotype for µ-opioid agonists, one 
that is not represented in the MDDR, although it and several conge-
ners can be found in PubChem. Because of this, when the methadone 
ligand set was queried against all 246 MDDR targets, the µ-opioid 
ligands were only found as the third-ranking hit. Unexpectedly, the 
set of methadone and its analogs was found by this method to be far 
more similar to the antimuscarinics activity class, particularly the M3 
receptor antagonists (Table 4). This attests to the MDDR’s known 
false-negative problem28, but more provocative was the predicted M3 

antagonism, as methadone is not known to have muscarinic activity. 
To test this possibility experimentally, we measured the affinity and 
activity of methadone on M3 muscarinic receptors by direct binding 
and a cell-based functional assay. Methadone was observed to have a 
Ki of 1.0 µM (Fig. 4a) and to antagonize activation of M3 receptors, 
consistent with the prediction (Fig. 4b).

We then looked for other single compounds with novel off-target 
effects. To increase the chance of novel action, we screened PubChem 
compounds—many of which are not in the MDDR database—against 
246 MDDR targets. Over 12,000 PubChem compounds with anno-
tated activities were compared to the MDDR ligand sets, using an 
automated procedure, looking for those where the target annotated in 
PubChem differed from that of the highest scoring MDDR set, using 
SEA. For the vast majority of the resulting 6,000 high-scoring hits, 
the annotations differed only trivially and could be rapidly excluded 
by post-filtering (e.g., “androgen antagonist” is formally different 
from “steroid antagonist,” but not in a pharmacologically interesting 
way). There were, however, 30 PubChem compounds that had very 
low (good) expectation values against genuinely unrelated MDDR 
categories. Two stood out by visual examination of their structures 
and by our ability to actually acquire and test them in the appropri-
ate assay. These were the drugs emetine and loperamide, which were 
predicted to antagonize adrenergic α2 and neurokinin NK2 recep-
tors, respectively, based on set similarities (Table 4). Both predic-
tions were tested by functional assay: 10 µM emetine was observed 
to induce 10.6- and 27.5-fold increases in the EC50 of the α2-agonist 
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Figure 2  Similarity maps for 246 enzymes and receptors. (a) Network view of pharmacological space, in which each node represents a particular target 
in the MDDR. The nodes are colored for several pharmacologically related targets: antifolates (red), phosphodiesterases (orange), opioids (blue), β-lactam 
antibiotics (dark green), metabotropic serotonergics (violet), ionotropic serotonergics (pink), adrenergics (cyan) and estrogen modulators (light green). This 
network is a naive threshold graph that includes only edges that have expectation values <1. (b) A tree view of pharmacological space. This is an alternate 
view of the same network as in a, over which we have calculated a minimal spanning tree. This approach connects all nodes (protein targets) using only the 
most significant connections. The node coloring is the same as that in a. (i) Detailed view of adrenergics: β adrenergic agonists (1), β1 adrenergic agonists 
(2), β1 adrenergic blockers (3), β adrenergic blockers (4), β3 adrenoceptor agonists (5), ophthalmic adrenergics (6), α2 adrenergic agonists (7) and α1 
adrenoceptor agonists (8). (ii) Detailed view of metabotropic serotonergics subset: 5-HT1F agonists (1), 5-HT1D agonists (2), 5-HT1 agonists (3), 5-HT1B 
agonists (4) and 5-HT1D antagonists (5). (iii) Detailed view of ionotropic (5-HT3) serotonergics: 5-HT4 agonists (1), 5-HT4 antagonists (2), 5-HT2 antagonists 
(3), 5-HT3 antagonists (4), and 5-HT3 agonists (5). (iv) Detailed view of steroids: estrogens (1), antiestrogens (2), estrone sulfatase inhibitors (3), estrogen 
receptor modulators (4), androgens (5), HMG-CoA reductase β-inhibitors (6), antiandrogens (7), aromatase inhibitors (8) and glucocorticoids (9).
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clonidine for α2a and α2c adrenergic receptors, respectively, and 10 
µM loperamide induced a 7.5-fold increase in the EC50 of the NK2 
agonist [β-Ala8]-neurokinin (Fig. 4c,d,e, see Supplementary Table 
4 online). Assuming competitive binding, these results put the affin-
ity of emetine for the adrenergic receptors in the 400-nM to 1-µM 
range, and the affinity of loperamide for NK2 receptors in the 1- to 
2-µM range.

Discussion
We have shown that protein targets may be quantitatively related by 
their ligands. SEA reveals both expected and unexpected similari-
ties that may be tested by examining the ‘off-target’ activities of the 
ligands themselves. Three aspects of these similarities merit particular 
emphasis. First, most ligand sets are highly related to only a few oth-
ers; the vast majority of ligand sets are unrelated. Second, there are 

Table 3  Comparing ligands from different sources: 23 PubChem pharmacological action sets versus 246 MDDR activity classes

Size MeSH pharmacological action
Pharmacological similarity top hits Mean pair-wise similarity top hits

MDDR activity class E-value MDDR activity class MPS

1 131 Adrenergic α-antagonists Adrenergic (α) blocker 1.18×10−22 Somatostatin analog 0.287

2 138 Adrenergic β-agonists Adrenergic (β1) agonist 1.54×10−203 Adrenergic (β1) agonist 0.395

3 132 Adrenergic β-antagonists Adrenergic (β1) blocker 6.65×10−77 Adrenergic (β1) agonist 0.370

4 30 Androgen antagonists Androgen 4.54×10−125 Androgen 0.300

5 21 Androgens Androgen 0 Androgen 0.551

6 10 Aromatase inhibitors Androgen 4.36×10−108 Androgen 0.226

7 29 Carbonic anhydrase inhibitors Carbonic anhydrase inhibitor 1.24×10−152 Carbonic anhydrase inhibitor 0.269

8 11 Cholinergic antagonists Anticholinergic 4.80×10−155 Anticholinergic 0.396

9 91 Cholinesterase inhibitors Acetylcholinesterase inhibitor 1.87×10−70 Melatonin agonist 0.207

10 98 Cyclooxygenase inhibitors Androgen 4.50×10−58 3-Hydroxyanthranilate oxygenase inhibitor 0.249

11 111 Dopamine agonists Dopamine agonist 5.50×10−120 Adrenoceptor (α2) antagonist 0.306

12 52 Estrogen antagonists Antiestrogen 3.56×10−112 Antiestrogen 0.281

13 20 Estrogens Estrogen 0 Estrogen 0.401

14 80 Glucocorticoids Glucocorticoid 0 Glucocorticoid 0.506

15 34 Histamine H2 antagonists H2 antagonist 1.47×10−53 H2 antagonist 0.248

16 20 HIV protease inhibitors HIV-1 protease inhibitor 8.41×10−108 Somatostatin analog 0.378

17 28 Lipoxygenase inhibitors Lipoxygenase inhibitor 2.05×10−16 Melatonin agonist 0.245

18 106 Muscarinic antagonists Anticholinergic 2.67×10−151 Anticholinergic 0.343

19 22 Nicotinic agonists Nicotinic agonist 3.00×10−22 Anaphylatoxin receptor antagonist 0.297

20 94 Phosphodiesterase inhibitors Phosphodiesterase I inhibitor 8.33×10−25 Anticholinergic, ophthalmic 0.227

21 86 Protease inhibitors Renin inhibitor 2.25×10−78 Anaphylatoxin receptor antagonist 0.334

22 65 Reverse transcriptase inhibitors Thymidine kinase inhibitor 1.63×10−145 Thymidine kinase inhibitor 0.333

23 12 Trypsin inhibitors Trypsin inhibitor 3.14×10−19 3-Hydroxyanthranilate oxygenase inhibitor 0.346
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Figure 3  Comparison of sequence and ligand-based protein similarity. (a) In difference heat map, red, red ellipses mark activity class pairs with strong 
ligand-set similarity but weaker sequence similarity. (b) Enzyme activity classes often fall into this category. Dark gray regions mark target pairs with strong 
sequence similarity but comparatively lower ligand-set similarity. (c) This region includes many GPCRs, ion channels and nuclear hormone receptors; such 
receptors may share evolutionary history but have often diverged in terms of pharmacological function. The white regions mark cases where pharmacological 
and sequence similarity approaches agree. This heat map was calculated by taking the difference of the two log-space heat maps available in Supplementary 
Figures 6 and 7 online.
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nevertheless enough connections among them to link almost all sets 
together, through sequential linkages, in coherent maps of pharmaco-
logically interesting chemical space. Third, biologically related targets 
cluster in these maps. No biological information was used to make 
these connections, only ligand chemistry, and such clustering is an 
emergent property of this technique. It is also an imperfect property, 
in that the clusters of targets can differ from those expected from 
biological information alone. Both the expected and unexpected con-
nections among the ligand sets have implications for understanding 
the effects of bioactive molecules, and lead to testable hypotheses.

The similarity of the ligand sets to only a few others owes to the 
intrinsic chemical differences between most sets and to the statistical 
model’s discrimination between significant (e.g., E-value < 1 × 10−10) 
and insignificant (e.g., E-value > 1.0) similarity. In the case of DHFR 
inhibitors, for instance, the three most related target sets are the folate 
recognition enzymes glycinamide ribonucleotide formyltransferase, 
folylpolyglutamate synthetase (FPGS) and TS, with expectation val-
ues ranging from 3.97 × 10−100 to 1.11 × 10−61; that is, highly sig-
nificant. The next most related set had no measurable similarity and 
the other 241 are even less related (Table 1). Likewise, AMPA recep-
tor antagonists score strongly against both kainic acid receptor and 
NMDA receptor antagonists (Table 2); all three are ionotropic gluta-
mate receptors traditionally subdivided into NMDA and non-NMDA 
types29. A key point is that many related targets would be missed if 
ligand identity was substituted for chemical similarity between sets, 
that is, if we only related sets that shared common ligands (the flip 
side of this is that many large ligand sets would be related artifactually 
if we did not control for similarity expected at random). For instance, 
the antiglucocorticoids, estrogen agonists, estrogen antagonists, pro-
gesterone antagonists and prostaglandins all rank as highly similar to 
the androgen agonists, as is sensible (Table 2 and Fig. 2b, iv). Yet not 

one of these sets shares a single ligand with 
the androgens (Table 2). Correspondingly, 
serotonergic 1F agonists closely resemble 
serotonergic 1B, 1D and 5-HT1 agonists and 
D4-dopamine receptor antagonists without 
sharing a single ligand in common (Fig. 2b, 
ii, and Table 2); the same is true for the rela-
tionship of β1 adrenergic receptor agonists 
to other β-receptor agonists and antagonists 
(Fig. 2b, i).

Related by chemical similarity, almost all 
of the 246 receptors may be mapped, through 
intermediate receptors, to all others. We found 
it convenient to interrogate this map interac-
tively: one may click on any node to display 
a table of all the nearest ligand set neighbors, 
including the molecules that make up any 
given set (http://sea.docking.org). Thus, dif-
ferent classes of β-lactam antibiotics cluster 
together in this map, as do the several classes 
of phosphodiesterase inhibitors (Fig. 2). The 
serotonergics form their own branch of the 
tree, with the ionotropic (5-HT3) agents iso-
lated (Fig. 2b, iii), just as the androgens and 
estrogens group closely but separately (Fig. 
2b, iv).

Another way to view such clustering is 
through a heat map that compares ligand-
set with sequence similarities between the 
same targets (Fig. 3a). When the ligand-set 

and sequence similarities agree, as with µ-receptor agonists versus 
δ-receptor agonists (Fig. 3c) and neurokinin NK2 antagonists versus 
NK3 antagonists, the matrix element in the heat map is white (it will 
also be white when there is neither sequence nor ligand-set similarity). 
Such correspondences are comforting, but more interesting are those 
targets for which the chemoinformatic and bioinformatic techniques 
disagree. Many target sequences are more similar than their ligand 
sets (dark gray matrix elements). For instance, the serotonin 5-HT1A-C 
subtypes are highly related by sequence but less so by ligand sets (Fig. 
3c), although the latter are not dissimilar. However, the serotonergics 
are also highly similar to the opioids by sequence, yet the ligands are 
different (Fig. 3c); much of this similarity arises from non-ligand-
binding regions. Conversely, some targets unrelated by sequence are 
closely related by ligand sets (red matrix elements in Fig. 3). Thus, 
the antifolates cluster together even though DHFR, GART, TS and 
FPGS are dissimilar by sequence (Fig. 3b). The differences between 
the chemoinformatic and bioinformatic views have several sources, 
among them that sequence similarity arises from evolutionary history, 
but chemoinformatic similarity and dissimilarity arise from the state 
of the art of medicinal chemistry. Indeed, designing the specificity 
necessary to pharmacologically distinguish receptor subtypes, such 
as, 5-HT1A, 1B and 1C, is a longstanding goal of medicinal chemistry, 
one executed in the teeth of their evolutionary relationships. Both 
the similarities and dissimilarities between the chemoinformatic and 
bioinformatic views lead to testable hypotheses.

Perhaps the most compelling result of this study is the experimen-
tal testing of three different drugs against targets to which they were 
not previously known to bind. We looked for candidate drugs based 
on known polypharmacology or on ligand-set similarities between 
targets with no clear precedence for cross-reactivity in the literature. 
Methadone attracted us because of its well-known polypharmacology,

Table 4  Novel target selectivity predictions for three existing drugs

Query Rank Size Activity class E-value Max Tc

Methadonea 1 188 Antimuscarinic 4.45×10−50 0.77

ON

2 266 Muscarinic M3 antagonist 1.22×10−11 0.67

3 68 Opioid agonist 1.84 0.61

4 1485 NMDA receptor antagonist 9.04 0.67

5 975 Muscarinic (M1) agonist 61.9 0.60

6 717 Cyclooxygenase inhibitor 12.1 0.61

Emetine 1 277 Adrenergic (α2) blocker 4.34×10−118 0.85

N

O

O

N

H
O

O

2 564 Dipeptidyl aminopeptidase IV inhibitor 6.50×10−17 0.94

3 180 Dopamine (D1) antagonist 1.23×10−10 0.74

4 1820 Substance P antagonist 25.8 0.64

5 288 Dopamine (D3) antagonist 179 0.61

6 212 Neurokinin NK3 antagonist 2.76×104 0.60

Loperamide 1 462 Neurokinin NK2 antagonist 1.55×10−20 0.75

N

O

N

HO

Cl 2 1820 Substance P antagonist 2.12×10−15 0.75

3 212 Neurokinin NK3 antagonist 2.63×10−14 0.66

4 518 Adrenergic (α1) blocker 1.64×10−10 0.72

5 583 Protein kinase C inhibitor 1.45×10−1 0.63

6 266 Muscarinic M3 antagonist 2.42 0.59

No query compound was already present in the reference 246 MDDR activity classes, and thus the Tc 1.0 (identity) column is 
omitted.  aAlthough methadone was compared as a set of analogs, only the structure for methadone itself is displayed for clarity.
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modulating both NMDA and µ-opioid receptors. Surprisingly, 
methadone most resembled the ligand-set of M3 muscarinic recep-
tor antagonists (Table 4). Both by direct binding and by functional 
assay, we find that methadone is a 1 µM antagonist of the M3 receptor, 
consistent with prediction (Fig. 4a,b). As far as we know, methadone’s 
action on M3 muscarinic receptors has not been reported previously, 
although a pharmacophore model that may be related to its promiscu-
ity has very recently appeared30. Intriguingly, its affinity for the M3 
receptor is consistent with some of the side effects of this drug29,31, 
which reaches micromolar steady-state concentrations in patients32. 
Emetine and loperamide are further examples of drugs that resemble, 
by SEA, target classes that they are not known to modulate. Emetine is 
an amebicide that inhibits polypeptide chain elongation in parasites33. 
By SEA, it has striking similarities to the adrenergic α2-blocker ligand-
set, with an expectation value of 4.3 × 10−118 (Table 4). Consistent 
with that similarity, we find that emetine antagonizes α2 receptors in 
the micromolar and possibly sub-micromolar range (Fig. 4d,e, and 
Supplementary Table 4 online). Although this activity has not, to our 
knowledge, been previously reported, it is consistent with the known 
side effects of this drug, which can lead to hypotension, tachycardia, 
dyspnea, myocarditis and congestive heart failure. Loperamide is an 
opioid that is used for relief of diarrhea through action on µ-opioid 
receptors in the gut29 (Table 4). The drug closely resembles the neuro-

kinin NK2 antagonist ligand-set, when compared by the SEA method 
(Table 4). Consistent with that prediction, we find that loperamide 
antagonizes NK2 receptors in the micromolar concentration range 
(Fig. 4c and Supplementary Table 4 online). Intriguingly, loperamide 
has been observed to modulate neurokinin NK3-receptor-triggered 
serotonin release, though this has been thought to be through its 
action on opioid receptors34. The results of this study suggest that the 
drug also has a direct effect on neurokinin receptors.

The polypharmacology of drugs and bioactive molecules emerges 
at the confluence of two currents: medicinal chemistry’s elaboration 
of new molecules and the molecular evolution of biological func-
tion. Fortuitously, this channeled elaboration relates receptors and 
enzymes frequently enough to link almost all targets together in a 
single map of chemically relevant biology with sufficient specificity, 
when the background of random possibilities is controlled for, to dis-
tinguish the significant links from a stochastic sea of possibilities. In 
the minimum spanning trees that are one result of this analysis, many 
proteins with related functions cluster together. Thus, ion channels 
and GPCRs that have no obvious sequence or structure similarity are 
linked quantitatively based on their bioactive ligands. An advantage 
of this way of relating biological receptors is that it is articulated 
through the very agents used to probe biology experimentally—drugs 
and related reagents. The hypotheses that emerge from this analysis 
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Figure 4  Testing the off-target activities of methadone, loperamide, and emetine. (a) Antagonism of M3 muscarinic receptors by the µ-opioid agonist 
methadone in a direct binding assay. Competition binding curves with [3H]quinuclidinyl benzilate in membrane fractions from CHO cells stably transfected 
with the human M3 muscarinic receptor. Each data point represents the mean and standard error of 4 conducted in duplicate or quadruplicate. Competition 
curves represent the best fit to a single-component logistic equation (GraphPad Prism 4.0). Two-site models did not yield a better fit. Membranes were 
incubated for 60 min at 25 °C with 0.5 nM [3H]quinuclidinyl benzilate and increasing concentrations of competing drug. Incubations were terminated by 
rapid vacuum filtration. Nonspecific binding was defined in the presence of 1.0 µM atropine and represented less than 10% of total binding. (b) Methadone 
antagonism of M3 muscarinic receptors by functional assay. Either methadone (10 µM final concentration) or vehicle was added at T = 20 s (1st addition), 
and then at T = 50 s (2nd addition) 1 µM carbachol was added to CHO-M3 cells and intracellular Ca2+ mobilization was measured, as previously described34. 
Dose-response curves (not shown) indicated that methadone was a competitive antagonist at M3-muscarinic receptors. (c) Loperamide antagonism of 
neurokinin NK2 receptors. Dose responses of CHO cells expressing Neurokinin NK2 receptors treated with [β-Ala8]-Neurokinin A were measured following 
administration of either DMSO vehicle or 10 µM loperamide. (d,e) Emetine antagonism of adrenergic receptors. Dose response of clonidine treatment of 
MDCK cells expressing either (d) alpha 2a adrenergic or (e) alpha 2c adrenergic receptors after incubation with DMSO vehicle or 10 µM emetine. Shown are 
representative curves, mean values ± s.e.m., of intracellular calcium release experiments performed in quadruplicate for each drug concentration per pre-
treatment condition as described in Methods.
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thus may be subjected to experiment, and to this end we have made 
the relationships and linkage maps among the targets studied here 
publicly available (http://sea.docking.org/). The predictions and sub-
sequent experimental observations that methadone, emetine and lop-
eramide act as muscarinic M3, adrenergic α2 and neurokinin NK2 
antagonists suggest that at least some of the predicted relationships 
merit investigation.

METHODS
Ligand sets. We extracted ligands from compound databases that annotate mol-
ecules by therapeutic or biological category. Multiple ligands in any annotation 
defined a set of functionally related molecules. As a source of ligands we used the 
2006.1 MDDR35, a compilation of about 169,000 drug-like ligands in 688 activ-
ity classes. We focused on a subset of this database, based on an ontology36 that 
maps Enzyme Commission (EC)37 numbers, GPCRs, ion channels and nuclear 
receptors to MDDR activity classes. Only sets containing five or more ligands 
were used. Salts and fragments were filtered, ligand protonation was normalized 
and duplicate molecules were removed. Of the 688 targets in the MDDR, 97 were 
excluded as having too few ligands (<5), and another 345 targets were excluded 
as being nonmolecular targets (e.g., the annotation “Anticancer” was not used). 
This left 246 targets, made up of a total of 65,241 unique ligands, with a median 
and mean of 124 and 289 ligands per target. The ligand set for methadone and 
14 of its analogs was manually populated by querying “methadone” in PubChem 
Compound (http://pubchem.ncbi.nlm.nih.gov/). Ligand structures for emetine 
and loperamide were likewise acquired from PubChem Compound. All ligands 
were represented as SMILES38 strings.

Quality of ligand set annotations. The activity class annotations available 
from the MDDR do not include explicit ligand-target affinity values and were 
primarily derived from the patent literature. Any given set may thus contain 
compounds with a wide range of affinities to the intended target. Although 
Hopkins and colleagues have recently found it useful to restrict the compounds 
annotated to a particular target to a limited affinity range12, we have found our 
methods robust to the number of analogs present and the particular identities 
of the analogs used. We address this in two experiments, wherein we (i) pre-
filter the MDDR for unique chemotypes at 0.90 and 0.85 Tc distances to test 
robustness against analog redundancy (Supplementary Fig. 2 online), and (ii) 
delete randomly chosen subsets of the ligand sets to test robustness against the 
particular choice of analogs present (Supplementary Fig. 3 online). However, 
as noted by Sheridan et al., ‘false inactives’ remain a limitation of patent-based 
databases such as the MDDR, as any given compound may be tested only for 
one or two of its potential activities28.

Set comparisons. All pairs of ligands between any two sets were compared by 
a pair-wise similarity metric, which consists of a descriptor and a similarity 
criterion. For the similarity descriptor, we computed standard two-dimen-
sional topological Daylight fingerprints38 using default settings of 2,048-bit 
array lengths and path lengths of 2–7 atoms. The similarity criterion was the 
widely used Tc39–41. For set comparisons, all pair-wise Tcs between elements 
across sets were calculated (Fig. 1), and those above a threshold were summed, 
giving a raw score for the two sets. The threshold was chosen so that the result-
ing statistics best fit an extreme value distribution (below).

Statistical model. A model for the random chemical similarity of the raw 
scores, motivated by BLAST22 theory, was developed and empirically fit. We 
compared 300,000 pairs of molecule sets, randomly populated from the fil-
tered full MDDR, across logarithmic set size intervals in the range of 10 to 
1,000 molecules. This range reflected the set sizes we expected to encounter, 
though the procedure appears robust over any reasonable range of set sizes.

The raw score for each set comparison was plotted against the total number 
of ligand pairs in the two sets being compared, and was observed to depend lin-
early on the product of the number of ligands in the two sets (Supplementary 
Fig. 1a online). The s.d. of the raw scores was fit nonlinearly against this 
product of the set sizes (Supplementary Fig. 1b and Supplementary Table 
5 online). Both fits were determined with the SciPy42 linear least-squares 
optimizer.

Set comparison Z-scores were calculated as a function of the set raw scores, 
expected raw scores and s.d. The histogram of Z-scores of the random sets 
conformed to an extreme value distribution (Supplementary Fig. 1c online). 
This distribution also underlies BLAST comparisons of protein and DNA 
sequences21,22. The probability of the score being achieved by random chance 
alone, given the Z-score, was converted to an expectation value (E-value) 
(Supplementary Methods online). The combination of set comparisons with 
the described statistical model is referred to as SEA. The ability of SEA E-values 
to correctly discriminate matching MDDR activity classes was tested against 
three simpler scoring metrics in Supplementary Figure 4 online.

There is no formal justification for choosing a cutoff for the Tc value 
between ligands. One criterion that had the virtue of consistency was to insist 
on a Tc value for which the background Z-scores were best fit by an extreme 
value distribution (Supplementary Figure 1c online). We calculated Z-score 
distributions for all Tc thresholds in the range 0.00 to 0.99, with step size 0.01. 
For each such distribution, we plotted the normalized chi-square of their best 
fit to both normal and extreme value distributions (Supplementary Fig. 5 
online). This led to a Tc threshold of 0.57 (Supplementary Table 5 online), 
which is low compared to accepted cutoffs for comparing individual pairs of 
ligands, emphasizing our different goal here: comparing ligand sets to inform 
us on the targets.

Similarity maps. All annotations in a given database were exhaustively com-
pared against all others, resulting in a matrix of SEA E-values among the ligand 
sets (the full matrix is available in Supplementary Data online). This matrix 
defined a strongly connected graph. In one approach, we filtered the graph 
by removing all edges with significance less than an E-value cutoff of 1.0; this 
is a threshold graph. We also constructed a minimum spanning tree over the 
original strongly connected graph with Kruskal’s algorithm43. We refer to this 
tree as a similarity map. The final images were rendered with Cytoscape44.

Difference heat map. Protein sequences for the targets of 193 of the 246 activ-
ity classes were obtained, 77 of which were derived from the MDDR-to-EC 
number mapping provided by Schuffenhauer et al.36. The remaining 117 
sequences were acquired from PubMed Protein searches. The resulting map-
ping of MDDR activity class to GI number is available in Supplementary Data 
online. We computed the sequence comparison matrix with PSI-BLAST27, 
as implemented in the blastpgp binary available from NCBI. The maximum 
final E-value displayed was 1 × 105, with low-complexity region filtering 
enabled, and a maximum of ten iterations computed before convergence. 
Supplementary Figure 6 online shows a heat map of the 193 × 193 PSI-BLAST 
matrix, created with matrix2png45

The unfiltered SEA E-value matrix described in similarity maps is shown 
as a heat map in Supplementary Figure 7 online. This matrix was compared 
against the sequence-comparison E-value matrix built above by taking the 
difference of the natural logarithms of each E-value pair. To avoid math range 
errors, both E-values were first confined within the range of 1 × 10−50 to 1 
× 105. A smaller E-value cap would allow for greater resolution of high-end 
E-values (e.g., 1 × 10−250 versus 1 × 10−200), but this would be at the expense 
of differentiating from insignificant similarity (e.g., 1 × 10−45 versus 1 × 105). 
As a cutoff of 1 × 10−50 or better appears necessary for reliable transfer46, no 
larger E-value cap was used.

PubChem out-group analysis. All compounds with annotated MeSH (http://
www.nlm.nih.gov/mesh/) “Pharmacological Actions” were downloaded from 
PubChem and filtered as previously described. Any compound already pres-
ent in the MDDR was removed, resulting in 10,557 unique nonoverlapping 
structures organized into 352 unique annotated ‘action sets’. Of these, 23 action 
sets could be specifically mapped to a MDDR ‘activity class’, with mean 62 and 
median 52 compounds per set. These sets were then ranked by SEA E-values 
against all 246 MDDR activity classes.

Choice of compounds for novel selectivity prediction. Methadone and 14 
analog structures from PubChem Compound were compared as a set against 
the MDDR to recapitulate known polypharmacology. Instead, novel selec-
tivity was predicted, deemed plausible and ultimately tested. Subsequently, 
an automated system was developed to compare individual PubChem 
Compound molecules with annotated pharmacological actions against the 
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MDDR. All activity class hits resembling known actions were discarded, leav-
ing 30 PubChem compounds with very low (good) expectation values against 
genuinely unrelated MDDR categories. Among these molecules, we targeted 
those that we could acquire and actually test, and whose structures resembled 
members of the novel target to which they were assigned by SEA (that is, 
there was a human filter on the compounds before assays were developed and 
compounds tested). The drugs emetine and loperamide met both criteria. We 
note that neither compound was present in the MDDR, nor was any a close 
congener. For emetine this reflects the lack of that family of amebicides in 
the MDDR, whereas loperamide is a nonclassical µ-opioid antagonist whose 
chemotype happens to be unrepresented among that MDDR ligand set. Thus 
neither of the classic targets of either drug was found by SEA, simply because 
the chemical structures were absent or unannotated or both.

Cell lines and functional calcium assay. Radioligand and functional assays 
were performed as previously detailed using the resources of the National 
Institute of Mental Health’s Psychoactive Drug Screening Program47,48 
using cloned, human M3-muscarinic receptors expressed in Chinese ham-
ster ovary (CHO) cells also, as previously described49. Neurokinin 2 recep-
tor stably expressed in CHO cells50 and alpha 2a and alpha 2c adrenergic 
receptors stably expressed in Madin-Darby canine kidney (MDCK) II cells51 
were carried in DMEM supplemented with 10% FBS, 1% penicillin-strepto-
mycin, 1 mM sodium pyruvate and 600 µg/ml G418. Cells were plated onto 
uncoated or poly-L-lysine coated in 96-well plates in DMEM supplemented 
with 5% dialyzed FBS and 1% penicillin-streptomycin. The following day, 
media was replaced with 30 µl/well of Calcium Assay Kit Component A Dye 
(Molecular Devices) dissolved in 28 ml/bottle of assay buffer (2.5 mM pro-
benecid, 20 mM HEPES and 1× HBBS (Gibco) (138 mM NaCl, 5.3 mM KCl, 
1.3 mM CaCl2, 0.49 mM MgCl2, 0.41 mM MgSO4, 0.44 mM KH2PO4, 0.34 
mM Na2HPO4) pH 7.4. Plates were incubated in the dye for 1 h at 37 °C. Drugs 
predicted to be antagonists were diluted in assay buffer to a concentration 
of 30 µM and 30 µl of solutions were added to 96-well plates for ~15 min 
before reading. Fluorometric imaging was performed using a FlexStation II 
plate reader (Molecular Devices) reading the plate at 1.5 s intervals for 1 min. 
After establishing a fluorescent baseline (excitation at 485 nM and emission 
at 525 nM, using a 515 nM cutoff), 30 µl of agonist was transferred to assay 
plates at the 20 s time point with reading for another 40 s. Peak relative fluo-
rescence units (RFU) were subtracted from baseline RFUs using SoftMax Pro 
(Molecular Devices) and data were then analyzed by nonlinear regression to 
obtain pEC50 values using GraphPad Prism version 4.03 (GraphPad Software). 
Statistical significance between pEC50 values obtained from vehicle and pre-
dicted antagonist pretreatment were analyzed by two-tailed t-test (P < 0.05) 
using GraphPad Prism.

ACKNOWLEDGMENTS
Supported by GM71896 (to B.K.S. and J.J.I.), Training Grant GM67547, a 
National Science Foundation graduate fellowship (to M.J.K.), the National 
Institute of Mental Health Psychoactive Drug Screening Program (B.L.R. and 
P.E.) and F32-GM074554 (to B.N.A.). We are grateful to Mark von Zastrow, 
Eswar Narayanan, Paul Valiant and Michael Mysinger for many thoughtful 
suggestions and to Jerome Hert, Veena Thomas and Kristin Coan for reading this 
manuscript. We also thank Elsevier MDL for use of the MDDR, and Daylight for 
the Daylight toolkit.

AUTHOR CONTRIBUTIONS
J.J.I., B.K.S. and M.J.K. developed the ideas for SEA, M.J.K. wrote the SEA 
algorithms and undertook the calculations reported here, with some assistance 
from J.J.I. B.L.R. and P.E. performed the methadone assays, B.N.A. performed the 
emetine and loperamide assays, and B.K.S. and M.J.K. wrote the manuscript with 
editorial review from J.J.I. and B.L.R.

COMPETING INTERESTS STATEMENT
The authors declare that they have no competing financial interests.

1. Roth, B.L., Sheffler, D.J. & Kroeze, W.K. Magic shotguns versus magic bullets: selectively 
non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov. 3, 
353–359 (2004).

2. Kroeze, W.K., Kristiansen, K. & Roth, B.L. Molecular biology of serotonin receptors struc-
ture and function at the molecular level. Curr. Top. Med. Chem. 2, 507–528 (2002).

3. Ebert, B., Andersen, S. & Krogsgaard-Larsen, P. Ketobemidone, methadone and pethidine 
are non-competitive N-methyl-D-aspartate (NMDA) antagonists in the rat cortex and 

spinal cord. Neurosci. Lett. 187, 165–168 (1995).
4. Callahan, R.J., Au, J.D., Paul, M., Liu, C. & Yost, C.S. Functional inhibition by methadone 

of N-methyl-D-aspartate receptors expressed in Xenopus oocytes: stereospecific and 
subunit effects. Anesth. Analg. 98, 653–659 (2004).

5. Krueger, K.E. Peripheral-type benzodiazepine receptors: a second site of action for ben-
zodiazepines. Neuropsychopharmacology 4, 237–244 (1991).

6. Finlayson, K., Witchel, H.J., McCulloch, J. & Sharkey, J. Acquired QT interval prolongation 
and HERG: implications for drug discovery and development. Eur. J. Pharmacol. 500, 
129–142 (2004).

7. Schreiber, S.L. Small molecules: the missing link in the central dogma. Nat. Chem. Biol. 
1, 64–66 (2005).

8. Johnson, M.A. & Maggiora, G.M. Concepts and applications of molecular similarity. (Wiley, 
New York; 1990).

9. Matter, H. Selecting optimally diverse compounds from structure databases: a validation 
study of two-dimensional and three-dimensional molecular descriptors. J. Med. Chem. 
40, 1219–1229 (1997).

10. Whittle, M., Gillet, V.J., Willett, P., Alex, A. & Loesel, J. Enhancing the effectiveness of 
virtual screening by fusing nearest neighbor lists: a comparison of similarity coefficients. 
J. Chem. Inf. Comput. Sci. 44, 1840–1848 (2004).

11. Willett, P. Searching techniques for databases of two- and three-dimensional chemical 
structures. J. Med. Chem. 48, 4183–4199 (2005).

12. Paolini, G.V., Shapland, R.H.B. & v Hoorn, W.P. Mason, J.S. & Hopkins, A.L. Global 
mapping of pharmacological space. Nat. Biotechnol. 24, 805–815 (2006).

13. Vieth, M. et al. Kinomics-structural biology and chemogenomics of kinase inhibitors and 
targets. Biochim. Biophys. Acta 1697, 243–257 (2004).

14. Izrailev, S. & Farnum, M.A. Enzyme classification by ligand binding. Proteins 57, 711–
724 (2004).

15. Bender, A. et al. “Bayes affinity fingerprints” improve retrieval rates in virtual screening 
and define orthogonal bioactivity space: when are multitarget drugs a feasible concept? 
J. Chem. Inf. Model. 46, 2445–2456 (2006).

16. Nidhi, Glick, M., Davies, J.W. & Jenkins, J.L. Prediction of biological targets for com-
pounds using multiple-category Bayesian models trained on chemogenomics databases. 
J. Chem. Inf. Model. 46, 1124–1133 (2006).

17. Steindl, T.M., Schuster, D., Laggner, C. & Langer, T. Parallel screening: a novel concept 
in pharmacophore modeling and virtual screening. J. Chem. Inf. Model. 46, 2146–2157 
(2006).

18. Schuffenhauer, A., Floersheim, P., Acklin, P. & Jacoby, E. Similarity metrics for ligands 
reflecting the similarity of the target proteins. J. Chem. Inf. Comput. Sci. 43, 391–405 
(2003).

19. Horvath, D. & Jeandenans, C. Neighborhood behavior of in silico structural spaces with 
respect to in vitro activity spaces-a novel understanding of the molecular similarity 
principle in the context of multiple receptor binding profiles. J. Chem. Inf. Comput. Sci. 
43, 680–690 (2003).

20. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment 
search tool. J. Mol. Biol. 215, 403–410 (1990).

21. Karlin, S. & Altschul, S.F. Methods for assessing the statistical significance of molecular 
sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87, 
2264–2268 (1990).

22. Pearson, W.R. Empirical statistical estimates for sequence similarity searches. J. Mol. 
Biol. 276, 71–84 (1998).

23. Sheridan, R.P. & Miller, M.D. A Method for Visualizing Recurrent Topological Substructures 
in Sets of Active Molecules. J. Chem. Inf. Comput. Sci. 38, 915–924 (1998).

24. Bradshaw, J. & Sayle, R.A. Some thoughts on significant similarity and sufficient diver-
sity. Presented at the 1997 EuroMUG meeting, 7–8 October 7–8, 1997, Verona, Italy. 
<http://www.daylight.com/meetings/emug97/Bradshaw/Significant_Similarity.html>.

25. Hert, J. et al. Comparison of fingerprint-based methods for virtual screening using 
multiple bioactive reference structures. J. Chem. Inf. Comput. Sci. 44, 1177–1185 
(2004).

26. Hert, J. et al. New methods for ligand-based virtual screening: use of data fusion and 
machine learning to enhance the effectiveness of similarity searching. J. Chem. Inf. 
Model. 46, 462–470 (2006).

27. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database 
search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

28. Sheridan, R.P. & Kearsley, S.K. Why do we need so many chemical similarity search 
methods? Drug Discov. Today 7, 903–911 (2002).

29. Goodman, L.S., Gilman, A., Brunton, L.L., Lazo, J.S. & Parker, K.L. Goodman & Gilman’s 
The Pharmacological Basis Of Therapeutics, edn. 11 (McGraw-Hill, New York; 2006).

30. Cleves, A.E. & Jain, A.N. Robust ligand-based modeling of the biological targets of known 
drugs. J. Med. Chem. 49, 2921–2938 (2006).

31. DRUGDEX (see Methadone) (Thomson Micromedex, Greenwood Village, Colorado, 2006). 
<http://www.thomsonhc.com>.

32. de Vos, J.W., Geerlings, P.J., van den Brink, W., Ufkes, J.G. & van Wilgenburg, H. 
Pharmacokinetics of methadone and its primary metabolite in 20 opiate addicts. Eur. J. 
Clin. Pharmacol. 48, 361–366 (1995).

33. DRUGDEX (see Emetine) (Thomson Micromedex, Greenwood Village, Colorado; 2006). 
<http://www.thomsonhc.com>

34. Kojima, S., Ikeda, M. & Kamikawa, Y. Loperamide inhibits tachykinin NK3-receptor-trig-
gered serotonin release without affecting NK2-receptor-triggered serotonin release from 
guinea pig colonic mucosa. J. Pharmacol. Sci. 98, 175–180 (2005).

35. MDL Drug Data Report, 2006.1 (MDL Information Systems Inc., San Leandro, CA, 
2006).

36. Schuffenhauer, A. et al. An ontology for pharmaceutical ligands and its application for in 
silico screening and library design. J. Chem. Inf. Comput. Sci. 42, 947–955 (2002).

37. International Union of Biochemistry and Molecular Biology, Nomenclature Committee 

ANALYS IS
©

20
07

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



206 VOLUME 25   NUMBER 2   FEBRUARY 2007   NATURE BIOTECHNOLOGY

& Webb, E.C. Enzyme Nomenclature 1992: Recommendations of the Nomenclature 
Committee of the International Union Of Biochemistry and Molecular Biology on the 
Nomenclature and Classification of Enzymes (Academic Press, San Diego; 1992).

38. James, C., Weininger, D. & Delany, J. Daylight Theory Manual (Daylight Chemical 
Information Systems Inc., Mission Viejo, CA; 1992–2005).

39. Willett, P. Similarity and Clustering in Chemical Information Systems (Research Studies 
Press; Wiley, Letchworth, Hertfordshire, England; New York; 1987).

40. Brown, R.D. & Martin, Y.C. Use of structure Activity data to compare structure-based 
clustering methods and descriptors for use in compound selection. J. Chem. Inf. Comput. 
Sc.i 36, 572–584 (1996).

41. Chen, X. & Reynolds, C.H. Performance of similarity measures in fragment-based similar-
ity searching: comparison of structural descriptors and similarity coefficients. J. Chem. 
Inf. Comput. Sci. 42, 1407–1414 (2002).

42. Jones, E., Oliphant, T. & Peterson, P. SciPy: Open Source Scientific Tools for Python. 
(2001). <http://www.scipy.org/>.

43. Kruskal, J. On the shortest spanning subtree and the traveling salesman problem. Proc. 
Am. Math. Soc. 7, 48–50 (1956).

44. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomo-
lecular interaction networks. Genome Res. 13, 2498–2504 (2003).

45. Pavlidis, P. & Noble, W.S. Matrix2png: a utility for visualizing matrix data. Bioinformatics 

19, 295–296 (2003).
46. Rost, B. Enzyme function less conserved than anticipated. J. Mol. Biol. 318, 595–608 

(2002).
47. Roth, B.L. et al. Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid 

selective agonist. Proc. Natl. Acad. Sci. USA 99, 11934–11939 (2002).
48. Davies, M.A., Compton-Toth, B.A., Hufeisen, S.J., Meltzer, H.Y. & Roth, B.L. The highly 

efficacious actions of N-desmethylclozapine at muscarinic receptors are unique and not 
a common property of either typical or atypical antipsychotic drugs: is M1 agonism a pre-
requisite for mimicking clozapine’s actions? Psychopharmacology (Berl.) 178, 451–460 
(2005).

49. Chelala, J.L., Kilani, A., Miller, M.J., Martin, R.J. & Ernsberger, P. Muscarinic receptor 
binding sites of the M4 subtype in porcine lung parenchyma. Pharmacol. Toxicol. 83, 
200–207 (1998).

50. Takeda, Y. et al. Ligand binding kinetics of substance P and neurokinin A receptors stably 
expressed in Chinese hamster ovary cells and evidence for differential stimulation of 
inositol 1,4,5-trisphosphate and cyclic AMP second messenger responses. J. Neurochem. 
59, 740–745 (1992).

51. Wozniak, M. & Limbird, L.E. The three alpha 2-adrenergic receptor subtypes achieve 
basolateral localization in Madin-Darby canine kidney II cells via different targeting 
mechanisms. J. Biol. Chem. 271, 5017–5024 (1996).

ANALYS IS
©

20
07

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts false
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly true
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.30000
    0.30000
    0.30000
    0.30000
  ]
  /PDFXOutputIntentProfile (OFCOM_PO_P1_F60)
  /PDFXOutputCondition (OFCOM_PO_P1_F60)
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF004e00500047002000570045004200200050004400460020004a006f00620020004f007000740069006f006e0073002e0020003100350030006400700069002e002000320032006e0064002000530065007000740065006d00620065007200200032003000300034002e002000500044004600200031002e003400200043006f006d007000610074006900620069006c006900740079002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 782.362]
>> setpagedevice


